Antibacterial of a Traditional Thai Herbal Recipe (THR 01) against Staphylococcus epidermidis

Thongrod, S. and Yincharoen, K.

Department of Traditional Thai Medicine, Faculty of Science and Technology, Rajamangala University of Technology Srinivajaya, Nakhon Si Thammarat Campus, Thung Song, Nakhon Si Thammarat, 80110, Thailand.

Abstract The experiment was conducted at the laboratory of the Department of Traditional Thai Medicine, Faculty of Science and Technology, Rajamangala University of Technology Srinivajaya, Nakhon Si Thammarat Campus during October, 2015 to September, 2016. The aim of the study was to investigate the antibacterial effects of four ethanolic extracts from traditional Thai herbal recipe (THR 01) and herbal components, *Ocimum sanctum* Lin., *Rhinacanthus nasutus* Lin. and *Quisqualis indica* Lin. against *Staphylococcus epidermidis*, antibacterial activity was evaluated by the broth macro dilution method according to Clinical and Laboratory Standard Institute (CLSI, 2012) was carried out to obtain the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Twofold serial dilution of the extracts was performed to obtain final concentrations ranging from 15.625 to 1,000 µg/ml. The bacterial inoculum (1ml) containing 10^6 CFU/ml was transferred into each test tube. Positive control with 1% DMSO and negative control without an inoculum added were included. The tested tube was then incubated at 37°C for 18 h. The MIC values were observed at the lowest concentration of crude extracts that produced a complete suppression of bacterial growth. The MBC are performed with 3 concentrations at sub-MIC, MIC and over MIC values. 10 of suspension was sub-culturing on tryptic soy agar (TSA) plate. After incubation at 37°C for 18 h, the plate was recorded MBC value at a concentration no colony of bacteria. The result showed that the antibacterial activity of methanol extracts traditional Thai herbal recipe (THR 01), its herbal components which were *Q. indica*, *R. nasutus* and *O. sanctum* against *S. epidermidis* isolated is considered to be a major virulence factor affecting their pathogenesis in wound infections using broth microdilution. The data on the experimental were indicating the efficacy of a Thai traditional remedy, THR 01 and herbal components which were *Q. indica*, *R. nasutus* and *O. sanctum* that showed results for inhibiting *S. epidermidis* isolated from wound infections with the MIC were 1000 µg/ml, 500 µg/ml and 500 µg/ml, respectively and all extracts no killed bacteria for the MBC. The study indicated that *R. nasutus* and *Q. indica* had strong antibacterial activities against the tested isolates.

Keywords: recipe, *Staphylococcus epidermidis*, antibacterial

Introduction

Statistics from the Ministry of Public Health in 2015, skin disease is a common disorder ranked eighth compared to other infectious diseases. The total patient rate of 98.64 cases per 1,000 population and statistics from
the patients at the Institute of Dermatology has a daily average of 800 people. (Institute of Dermatology, 2015) Thailand is a tropical country that can lead to pathogenic bacteria grow well. The most common bacterial skin infection is the group of Staphylococcus (Sutabhaha and Khantawa, 2011).

Staphylococcus epidermidis is a Gram-positive cocci in group of facultative anaerobic bacteria. S. epidermidis are common bacterial colonizers of the skin and mucous membranes such as the nose, mouth, ears and distal convoluted tubule of urinary system. (Namvar et al., 2014) According to previous study found, S. epidermidis is a bacterial species that forming in biofilm conditions more than other bacteria species. In S. epidermidis, biofilm formation is regarded as a major pathomechanism as it renders this pathogen highly resistant to antibiotic drugs. As a result, the treatment of S. epidermidis infectious diseases are difficult to treat (Thongrod, 2013; Chusria et al., 2016).

Herbal medicines have increased widespread interest in the search of alternative antibacterial agents because of the perception that they have a long history of use in folk medicine for the treatment of infectious diseases. The aim of this study was carried out to investigate the antibacterial activity of four ethanolic extracts from traditional Thai herbal recipe (THR 01) of Mr. Dunhaseed WMak and its herbal components which are Ocimum sanctum L., Rhinacanthus nasutus L., Quisqualis indica L. and against S. epidermidis from wound infections.

Materials and methods

Preparation of crude extracts

Traditional Thai herbal recipe 01 (THR-01) consists of equal amounts (50 g) of their medicinal plant components, Ocimum sanctum L., Rhinacanthus nasutus L. and Quisqualis indica L. Single herbal component was used 50 g. The herbal powder was extracted (1:2, w/v) with 95% ethanol at room temperature for 7 days. After filtration, 95% ethanol was removed with a rotatory evaporator, kept at 55°C until they were completely dry and stored in a sterile eppendorf at 4°C. Extraction yield (%, w/w) was calculated as the ratio of the weight of the extract to the weight of the crude herb powder. The crude extract was dissolved with dimethylsulfoxide (DMSO) at concentration 40 mg/ml.

Evaluation of antibacterial activity

Antibacterial activity was evaluated by the broth macrodilution method according to Clinical and Laboratory Standard Institute (CLSI, 2012) was carried out to obtain the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Twofold serial dilution of
the extracts was performed to obtain final concentrations ranging from 15.625 to 1,000 µg/ml. The bacterial inoculum (1 ml) containing 106 CFU/ml was transferred into each test tube. Positive control with 1% DMSO and negative control without an inoculum added were included. The tested tube were then incubated at 37°C for 18 h. The MIC values were observed at the lowest concentration of crude extracts that produced a complete suppression of bacterial growth.

The MBC are performed with 3 concentrations at sub-MIC, MIC and over MIC values. 10 of suspension was sub-culturing on tryptic soy agar (TSA) plate. After incubation at 37°C for 18 h, the plate was recorded MBC value at a concentration no colony of bacteria. All experiments were carried out in triplicate.

Results

Antibacterial activity of plant

THR-01 extracts and its herbal components which are *Ocimum sanctum* L., *Rhinacanthus nasutus* L., *Quisqualis indica* L. and exhibited different inhibition levels against *S. epidermidis* as shown in Table 1. The ratio of MBC to the macrobroth-determined MIC was 15.625 to 1,000 µg/ml. The MIC for the ethanolic extracts present *R. nasutus* L. and *Q. indica* L. showed the strongest antibacterial activity with MIC values of 500 µg/ml secondly THR-01 extracts showed activity with MIC values of 1,000 mg/ml while *O. sanctum* L. in this study no inhibitory activity against bacteria tested and all extracts no killed bacteria for the MBC as shown in Table 2.

Table 1. Minimum inhibitory concentrations (MIC) of ethanolic extract against *S. epidermidis* determined by macro-broth dilution methods

<table>
<thead>
<tr>
<th>Herbal components</th>
<th>Concentration of ethanol extract (µg/ml)</th>
<th>1,000</th>
<th>500</th>
<th>250</th>
<th>125</th>
<th>62.5</th>
<th>31.25</th>
<th>15.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum sanctum Linn.</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhinacanthus nasutus Linn.</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quisqualis indica Linn.</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>THR 01</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Minimum bactericidal concentrations (MBC) of ethanolic extracts against *S. epidermidis*

<table>
<thead>
<tr>
<th>Herbal components</th>
<th>MIC and MBC (µg/ml)</th>
<th>MIC</th>
<th>MBC</th>
<th>MIC</th>
<th>MBC</th>
<th>MIC</th>
<th>MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinacanthus nasutus Linn.</td>
<td></td>
<td>1,000</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>Quisqualis indica Linn.</td>
<td></td>
<td>1,000</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>THR 01</td>
<td></td>
<td>1,000</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Discussion

S. aureus and *S. epidermidis* are the most common bacterial skin infection in the group of Staphylococcus. The peppermint oil (10 IL) exhibited greater zone of inhibition against *S. aureus, S. pyogenes*, and *K. pneumonia* than the positive control gentamycin (10 IL of 10 lg/mL concentration) were reported by Singh et al. (2015) while *Ocimum sanctum* L. in this study no inhibitory activity against bacteria tested although, both of the extracts has contain essential oils as well. The silver nanoparticles synthesized by *S. tricobatum, O. tenuiflorum* extracts were found to have highest antimicrobial activity against *S. aureus* (30 mm) and *E. coli* (30 mm) respectively, these reported Logeswari et al. (2015). The extract of *O. sanctum* significantly decreased the antihealing activities of dexamethason in all the wound models. The results indicated that the leaf extract promotes wound healing significantly and ability to overcome the wound healing suppressing action of dexamethasone (Udupa et al., 2006). The results agree with reports based on local use of common diseases and ethnobotanical knowledge, an attempt has been made to assess the antibacterial properties of selected medicinal plants such as *O. sanctum* (Tulsi) and *Origanum majorana* (Ram Tulsi). The plant extracts were more active against Gram-positive bacteria than against Gram-negative bacteria. The most susceptible bacteria were *B. subtilis*, followed by *S. aureus*, while the most resistant bacteria were *E. coli*, followed by *Shigella dysenteriae, Klebsiella pneumoniae* and *Salmonella typhi* (joshi et al., 2009). The aqueous extract of *Zingiber officinale* was active against *P. aerugenosa* and *S. aureus*, with highest activity against the former at a concentration of 200 g (Sulaiman et al., 2014).

The antifungal activity of rhinacanthin-rich extract (HRn) against *Trichophyton rubrum, Trichophyton mentagrophytes*, and *Microsporum gypseum* was evaluated and compared with those of the ethyl acetate extract and standard rhinacanths. The result showed that the antifungal activity of HRn was better than that of the ethyl acetate extract. The antifungal activity of HRn was equal to that of rhinacanthin-C. This may be due to a synergistic effect of all the three rhinacanths is rhinacanthin-C, rhinacanthin-D, and rhinacanthin-N in *Rhinacanthus nasutus* leaves on the antifungal activity (Panichayupakaranant et al., 2009). Antimicrobial activities, evaluation of the Rhinacanthins-rich Rhinacanthus nasutus (RRn) extract and rhinacanthin-C against *S. mutans, P. acnes, H. pylori, S. aureus, S. epidermidis*. The RRn extract exhibited potent bactericidal activity against Gram-positive anaerobic bacteria including *S. mutans* and *P. acnes* with MBC values of 4 and 32 mg/ml, respectively. The extract also showed moderate bactericidal activity against Gram positive aerobic bacteria including *S. aureus* and *S. epidermidis* with the MBC values of 256 and 512 mg/ml, respectively. (Puttarak et al., 2010) as same as in this study,
Rhinacanthus nasutus L. showed the strongest antibacterial activity, although the MIC is less than any previous study.

The in vitro study revealed that methanol extract was more effective than aqueous extract. Leaf extracts of Quisqualis indica L. and Achyranthes aspera L. was reported to be more effective on fungal species and on contrary leaf extracts of Calotropis procera Ait. and Quisqualis sanctum L. was found more effective on B. subtilis, E. coli and Pseudomonas aeruginosa (Sanguri, et al., 2012). Diphenylpropanoids from Q. indica L. were tested for their anti-staphylococcal activity against a total of five multidrug-resistant (MDR) and methicillin-resistant Staphylococcus aureus strains and the minimum inhibitory concentrations (MICs) were in the range of 128-256 μg/ml. (Jahan et al., 2009)

Conclusion

The results of this study showed that a Thai traditional herbal recipe THR 01 and its major constituent, Rhinacanthus nasutus L., Quisqualis indica L. have an antibacterial activity and supports the traditional usage of the recipe for dermatitis.

Acknowledgements

The authors are thankful to the Department of Traditional Thai Medicine, Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat Campus, whom had the financial supported in this research project.

References

(Received: 24 December 2016, accepted: 8 January 2017)